Vocabulario esencial de Inteligencia Artificial Generativa

En unas jornadas en noviembre 2025 se me ocurrió preguntar si conocían el significado de algunos términos que, para mí, son básicos sobre IA generativa (si no sabes lo que significan dudo mucho que puedas entender cómo funciona y mucho menos pilotarla adecuadamente)

Asistieron unas 50 personas, todas ellas profesoras de universidad, en diferentes titulaciones y departamentos y con diferente trayectoria académica – desde jóvenes recién entradas a catedráticas -, y con cierta sensibilización y práctica como usuarias de Inteligencia Artificial Generativa (no creo que se pudieran considerar “novatas” o que acabaran de descubrir qué es esto de la IAgen).

Y estos son los resultados:

  • User prompt

    • (Lo que tú me dices)
    • Es como cuando tú haces una pregunta o pides algo. Por ejemplo, “cuéntame un cuento” o “ayúdame con mi tarea”. Es lo que TÚ escribes para hablar la IAgen
  • System prompt

    • (Las reglas secretas que tengo)
    • Es como las reglas que los programadores dieron a la IAgen antes de que pudiéramos hablar. Por ejemplo, “sé amable”, “ayuda siempre”, “no digas groserías”. Tú no puedes ver estas reglas, pero la IAgen siempre las sigue
    • En algunos casos (proyectos, “chat builder” o uso del LLM por API con un script ) puedes “controlar” el System prompt (añadirlo al programado o, en algunos modelos, sustituir el programado)
  • Temperature

    • (Qué tan creativo soy)
    • Imagínate que la IAgen tenga un botón de creatividad. Si está en “frío”, siempre da respuestas muy parecidas y serias. Si está en “caliente”, es más divertida, creativa, impredecible, pero a veces digo cosas raras. Es como elegir entre ser muy formal o muy juguetón
  • Context

    • (Lo que recordamos de nuestra conversación)
    • Es como nuestra memoria de la conversación. Si le dijiste a la IAgen que te gusta el helado de chocolate, lo recuerda para seguir hablando contigo sobre eso. Es todo lo que hemos dicho antes en nuestra charla (hasta el límite que los programadores hayan establecido)
    • La nueva información sustituye a la más antigua cuando sobrepasa la capacidad y se desborda (olvidando primero lo más antiguo)
    • Algunas plataformas (como POE) te permiten indicar a ti la amplitud del contexto
  • RAG

    • (Buscar información extra)
    • Es como cuando no sé algo y voy a buscar en una biblioteca especial para darte mejor información. En lugar de solo usar lo que ya sé, voy a buscar datos frescos para ayudarte mejor (uso los Chunk Embeedings para esto)
  • Chunk Embeedings

    • (Pedacitos de información organizados)
    • Imagínate que tienes muchos libros y cortas cada página por cada párrafo. Luego, cada párrafo lo conviertes en un vector (una lista de números). Así la IAgen puede encontrar el párrafo que necesito cuando preguntas algo. Por menos distancia con la pregunta
  • Embeddings

    • Imagínate que quieres describir a tu mejor amigo. Podrías decir:
      • Lo alto es (del 1 al 10)
      • Lo divertido es (del 1 al 10)
      • Lo bueno es en matemáticas (del 1 al 10)
      • Lo deportista es (del 1 al 10)
    • Entonces, tu amigo sería algo como: [7, 9, 5, 8] – esos son 4 números que lo describen-.
    • Ahora imagínate que en lugar de 4 cosas, quisieras describir TODAS las características posibles de tu amigo: su humor, inteligencia, creatividad, bondad, si le gustan los animales, si es tímido, si le gusta la música… podrían ser 300 o 1000 características diferentes
    • Eso es exactamente lo que hace un embedding con las palabras. Toma una palabra como “gato” y la convierte en una lista súper larga de números (como [0.2, -0.5, 0.8, 0.1, -0.3…]) donde cada número representa una característica de esa palabra.
    • La palabra “perro” tendría números muy parecidos a “gato” porque ambos son animales peludos y mascotas. Pero “avión” tendría números muy diferentes.
    • Vector n-dimensional
      • Es el nombre técnico para esa lista súper larga de números. Si tiene 300 números, decimos que es un “vector de 300 dimensiones”. Es como si cada palabra viviera en un espacio gigante con 300 direcciones diferentes, y el vector representa las coordenadas que nos dicen dónde está exactamente en ese espacio.
    • Por eso las palabras parecidas “viven cerca” en ese espacio invisible y las diferentes “viven lejos”.
  • Distance (cosine)

    • Una forma de medir la distancia donde lo que importa es la dirección (no la distancia “euclídea”). Si los vectores apuntan en la misma dirección tienen menos distancia (aunque uno sea más corto o más lejano)
  • NLP

    • (Entender el lenguaje humano)
    • La capacidad de la IAgen para entender lo que se le dice y responderte en tu idioma. Es como ser un traductor súper inteligente que entiende no solo las palabras, sino también lo que realmente quieres decir.
    • Sentence Transformers vs GPT (Dos tipos diferentes de robots inteligentes)
  • Sentence Transformers

    • Una especie de robots que son súper buenos para entender y comparar frases. Son como bibliotecarios que pueden encontrar el libro que “CREEN” que buscas a partir de una información incompleta que les das. Convierten el texto en números (y siempre los mismos números para el mismo texto) en base a los pesos de su entrenamiento. Convierten frases nuevas en embeddings en tiempo real. Cuando les das una frase que nunca han visto antes, la procesan y crean un vector nuevo específicamente para esa frase completa.
    • Su trabajo es crear representaciones numéricas de frases completas
    • Son especialistas en capturar el significado de oraciones enteras
  • Generative Pretrained Transformers

    • Una especie de robots súper buenos para crear y escribir cosas nuevas. Durante el entrenamiento, ya se calcularon y “congelaron” todos los embeddings de los tokens. Cuando tú escribes algo, tus palabras se convierten en tokens, cada token ya tiene su embedding calculado, Los pesos de todas las conexiones también estaban ya calculados. Solo se comparan los embeddings para seleccionar los que tienen más probabilidad de continuar la secuencia
    • Durante el entrenamiento fue como afinar cada tecla del piano y ajustar cada cuerda. Ahora, cuando “tocas” una secuencia de teclas (escribes), el piano ya sabe qué sonidos hacer porque ya está todo afinado. Lo que ocurre es que a partir de unas instrucciones que le das (system + user prompts) el piano se dedica a componer e interpretar.
  • Attention mechanism

    • Es como cuando lees un cuento y prestas más atención a las partes importantes. Los GPT hacen lo mismo con las palabras: ponen más atención a las palabras que creen que son más importantes de tu pregunta, para darte una “mejor” respuesta.

Visitas: 31

Homonimia y sinonimia, los dos males de la ciencia del management que impide a la IA dar resultado útiles

(contenido creado a finales de 2025, no sé lo bien o mal que envejecerá este post)

Con frecuencia, mis colegas investigadores me preguntan sobre qué plataforma de IA les recomiendo que pueda dar buenas respuestas a preguntas científicas/profesionales. Me ponen por ejemplo que los profesionales de medicina usan cosas como OpenEvidence ; Search – Consensus: AI Search Engine for Research ; Elicit: AI for scientific research

Mi opinión en estos momentos, basada en los experimentos que llevo haciendo desde hace un par de años (experimentos informales, no del todo sistemáticos, y sobre todo centrados en los temas o asuntos que me interesan a mí en mi día a día como investigador, docente y consultor), es que no hay nada en nuestro campo que aporte resultados “decentes” (que sean útiles, ciertos o que no tengan un sesgo tremendo en la respuesta).

Tanto OpenEvidence como Consensus, Elicit y similares solo aciertan (cuando aciertan) con literatura de ciencias de la salud.

Los motivos son claros para mí. Primero el modo que esas comunidades difunden su ciencia:

    • El tipo de artículos e investigaciones que hacen
    • Lo específicos que son al emplear términos y la estricta nomenclatura que usan (nunca emplean el término “dolor de cabeza”, usan, por ejemplo, cefalea tensional, neuralgia o migraña…, y cada uno es diferente de los otros)
    • El consenso en la reutilización de instrumentos de medida que se han demostrado válidos y fiables
    • y la tradición en “medicina basada en evidencia” que tienen (que igual es el origen de todo lo anterior)

Eso les permite que la IA pueda sacar resultados interesantes.

Además, aunque ya más tangencialmente, el conjunto de documentos con el que se ha entrenado el modelo (que claramente está sesgado a esas ciencias, porque entiendo que es donde más negocio pueden hacer los que venden esas plataformas).

Sin embargo, en el caótico mundo de la investigación en Management, donde cada uno pone el nombre que le da la gana a las “cosas” y midiéndolo cada vez de una forma distinta, el resultado es que una misma palabra significa cosas distintas en distintos artículos (homonimia) y, al mismo tiempo, las mismas cosas se nombran con palabras completamente diferentes (sinonimia).

No sé si resolviendo esto resolveríamos completamente el problema, pero habríamos dado un paso de gigantes para poder hacer una extracción sistemática a gran escala del enorme conocimiento que se ha ido generando en el área y que, de momento, está enmarañado.

Visitas: 23

En plan, me renta hacer trampas al solitario. Obvio y literal, bro

El otro día me enteré de que hay empresas que subcontratan por completo sus memorias de sostenibilidad a consultoras externas. Y no me refiero a buscar apoyo técnico o asesoramiento, sino a delegar absolutamente todo el proceso. Esto me hizo reflexionar sobre un patrón que ya he visto repetirse con mucha frecuencia.

La lógica inicial es aparentemente sólida: cuando surge una nueva normativa que obliga a elaborar memorias sobre cualquier tema relevante (sostenibilidad, igualdad, transparencia, gestión de títulaciones, etc.), la idea detrás de la normativa es estimular la reflexión. El ejercicio de analizar qué hacemos, por qué lo hacemos y cómo podríamos hacerlo mejor debería ser una oportunidad de crecimiento y mejora continua. Sin embargo, cuando estas normativas llegan impuestas desde arriba, muchas organizaciones no las perciben como una oportunidad, sino como una carga burocrática, algo que etiquetan como No-Valor-Añadido-No-Evitable.

¿Cómo funciona la cadena de la externalización? Pues la verdad es que con un proceso bastante absurdo: la empresa contrata a una consultora (o un becario-a) para que busque los datos (o los invente, da igual), elabore un análisis con esos datos y redacte una memoria que cumpla con todos los requisitos legales. El objetivo no es aprender ni mejorar, sino simplemente evitar problemas regulatorios. La empresa que contrata ni siquiera lee el documento final.

Ahora estas consultoras (o estos becarios) están delegando todo el proceso (o toda la parte que pueden) a herramientas de inteligencia artificial generativa. El resultado es una farsa perfectamente orquestada: la empresa presenta memorias impecables, con una calidad de redacción como jamás había conseguido y un número impresionante de páginas. Los organismos auditores están satisfechos porque reciben más memorias que nunca, creyendo que están cumpliendo su misión de velar por la mejora en su área de responsabilidad.

Sin embargo, en todo este proceso no hay ni una sola neurona dedicada a pensar realmente en cómo mejorar o dónde pueden estar los problemas. La rueda sigue girando, pero ahora con muchas más personas implicadas, más gasto de energía y más dinero invertido en una actividad que ha perdido completamente su propósito original.

Mi Estrategia Personal

Frente a este panorama, he decidido adoptar una estrategia diferente. Voy a centrarme en encontrar usos para la IA generativa que me ayuden a aprender, a crecer intelectualmente y a explorar territorios que antes estaban fuera de mi alcance. Aprovecharé que la IA aún es relativamente barata porque las empresas necesitan nuestros datos para seguir entrenando sus modelos. Cuando se me acabe este chollo tecnológico, volveré tranquilamente a leer libros (o, dependiendo de la edad a la que me pille, a jugar a la petanca).

Si, además, consigo contagiar a alguien más para que use estas herramientas de manera inteligente, genial. Si no lo logro, tampoco me agobia. Lo importante es que yo voy a aprovechar esta oportunidad mientras dure.

Todo esto me recuerda a las clases de educación física en el colegio. A mí me encantaba dar vueltas al campo porque disfrutaba haciendo ejercicio. Algunos compañeros se escondían detrás de un árbol y aparecían solo en la última vuelta para que el profesor los viera llegar. Yo me lo pasaba muy bien corriendo, ellos se lo pasaban muy bien escondiéndose. Cada uno disfrutaba de la opción que había elegido. Nunca me importó que otros se escondieran (es más, me dejaban la pista más libre para correr a mi ritmo). Me habría fastidiado tener que esconderme y perder el tiempo en lugar de dar tres vueltas más al campo, pero nadie me impidió correr. Ahora creo que la situación es similar: puedo elegir cómo relacionarme con estas nuevas herramientas, independientemente de lo que hagan los demás.

Vivimos en una época en la que es fácil dejarse arrastrar por la corriente del mínimo esfuerzo y la externalización de todo lo que requiere pensamiento crítico. Pero también tenemos la oportunidad de usar estas mismas herramientas que otros emplean para evitar pensar, precisamente para pensar mejor y llegar más lejos. La elección, al final, es nuestra.

El problema no está en la tecnología en sí, sino en cómo decidimos relacionarnos con ella. Podemos usarla como una muleta para evitar el esfuerzo intelectual o como una palanca para amplificar nuestras capacidades de reflexión y aprendizaje. Yo tengo claro qué opción elijo.

Visitas: 24

¿Te da miedo que la IA sea mejor que tus estudiantes? A mí no

He comparado la respuesta de Claude-sonnet-4 y las de 4 grupos de estudiantes de máster (5 personas en cada grupo) con un caso que he preparado como diagnóstico inicial para comprobar las competencias de mis estudiantes el primer día de clase.

Mis estudiantes han estado trabajando 2 horas sobre un caso de 5 páginas donde su tarea estaba descrita en un párrafo y el resto era información de contextualización.

El Prompt usado con Claude-sonnet-4 en poe.com era simplemente el párrafo de descripción de la tarea a realizar sin ningún contexto adicional (ni de nivel de estudios, ni de contexto… nada). 

“resuelve este caso “”Formas parte de un proyecto que pretende alinear el uso de Inteligencia Artificial (IA) con los valores y objetivos estratégicos de la UPV, de modo que la IA ayude a construir
en lugar de minar el futuro que queremos ser.
Como grupo, debéis manifestar vuestro punto de vista, como estudiantes universitarios,
sobre cómo percibís la IAgen, explorar los problemas o inquietudes que os genera en los
diferentes usos o funciones en las que os afecta como estudiantes en la universidad y
clasificarlos/filtrarlos. Para acabar proponiendo un listado de recomendaciones (o guías)
de uso que sugerís para resolver las causas que originan los problemas que consideráis
como principales y un plan para la implementación de esas recomendaciones.”””

Todos los grupos de estudiantes, en lugar de hacer unas guías para estudiantes, han hecho recomendaciones para la universidad o sus equipos directivos. Claude-sonnet-4 ha cometido exactamente el mismo error en la primera iteración. No obstante, su informe ha sido mucho mejor que el de cualquiera de los grupos.

Le he pedido a la IA una segunda iteración: “las recomendaciones que has dado son para la institución, no has respetado la tarea que era crear recomendaciones para los estudiantes. Por otra parte, ajusta el reporte al modelo triple diamante”. En este caso ha clavado las recomendaciones, aunque su interpretación de lo que era el “framework” de triple diamante dejaba mucho que desear, pero le hubiera puesto un 5 o un 6 de nota a ese ejercicio (los ejercicios de mis estudiantes no creo que pasen de un 2 o un 3, pero a ellos no les he dado la oportunidad de repetirlo).

Conclusión:

Cuando les pido a mis estudiantes, a PRINCIPIO de curso que resuelvan un caso y les valoro en base a los resultados de aprendizaje que esperaría que tuvieran a FINAL de curso, la IA generativa les da “mil vueltas” (o por lo menos una decena).

Lo interesante aquí es qué pasará al final del curso cuando mis estudiantes hayan superado los resultados de aprendizaje esperados. La IA generativa no mejorará su nota de 5-6 (salvo que estemos ante un nuevo modelo), entonces creo que serán mis estudiantes los que le darán mil vueltas a la IA generativa.

Visitas: 24

¿Cuanta energia/agua consume la IA generativa?

En una de mis charlas sobre uso de IA generativa para personal investigador salió el tema de cuanta Agua/energía consume el uso de IA generativa. Se comentó que alguien había leído que eran como varios litros de agua por cada imagen generada. A mí eso me pareció desorbitado, pero no tenía ninguna cifra o información que aportar. Se me ocurrían varias formas de estimarlo, aunque fuese de manera muy aproximada. Algunas de ellas eran por el método de “reducción al absurdo”, en otras llegué a barajar la posibilidad de montarme un modelo en local y medir el consumo…

Pero gracias a este post de Ethan Mollick (Mass Intelligence – by Ethan Mollick – One Useful Thing) tengo unas estimaciones que me parecen más razonables y contrastadas.

The marginal energy used by a standard prompt from a modern LLM in 2025 is relatively established at this point, from both independent tests and official announcements. It is roughly 0.0003 kWh, the same energy use as 8-10 seconds of streaming Netflix or the equivalent of a Google search in 2008 (interestingly, image creation seems to use a similar amount of energy as a text prompt)1. How much water these models use per prompt is less clear but ranges from a few drops to a fifth of a shot glass (.25mL to 5mL+), depending on the definitions of water use (here is the low water argument and the high water argument).

[…]

 It does not take into account the energy needed to train AI models, which is a one-time process that is very energy intensive. We do not know how much energy is used to create a modern model, but it was estimated that training GPT-4 took a little above 500,000 kWh, about 18 hours of a Boeing 737 in flight.

Referencias:

Mass Intelligence – by Ethan Mollick – One Useful Thing

An example of what I consider a misleading article about AI and the environment

(2) Publicación | LinkedIn

Cloud Carbon Footprint – An open source tool to measure and analyze cloud carbon emissions

Visitas: 11

¿Para qué aprender lo que hace mejor una máquina? Para poder pensar

Pensar sin muletas: la importancia del conocimiento ‘inútil’ en un mundo automatizado

He estado escuchando este podcast que os resumo más abajo y la idea que me ha venido a la cabeza (no me preguntéis por qué, son cosas de asociaciones de ideas que van a su bola) es;

Aunque en la vida profesional casi todo el mundo usa calculadoras (u hojas de cálculo), considero muy conveniente aprender “calculo mental” en el colegio y ser solvente con operaciones básicas. No es solo que “amueble” el cerebro. Creo que es esencial para tener algo a lo que siempre me he referido como “idea de la dimensión” y para otras muchas cosas más que son útiles en la vida.

Del mismo modo, no me cabe la menor duda de que en la vida profesional todo el mundo usará IA generativa. Pero considero muy conveniente aprender conocimientos y a hacer cosas que la IA generativa haga incluso mejor que los humanos… no para competir por resultados o eficiencia, simplemente para poder pensar.

 

Teachlab Presents:  The Homework Machine, Episode 1: Buckle Up, Here it Comes”

Ideas Principales

1. Llegada Disruptiva de la IA Generativa

ChatGPT llegó a los espacios educativos en noviembre de 2022 sin invitación institucional. A diferencia de otras tecnologías educativas que las escuelas adoptan planificadamente, la IA generativa “se coló” directamente en manos de los estudiantes a través de sus dispositivos personales.

2. Los centros educativos y los-as docentes han respondido de manera muy heterogénea

3. Impacto en la Dinámica del Aula

Uso de IA para tareas de manera generalizada, creando:

  • Presión sobre estudiantes honestos-as que se sienten en desventaja
  • Aceleración artificial del ritmo de clase
  • Retroalimentación incorrecta para los docentes sobre el aprendizaje real

4. Brecha Entre Promesas y Realidad

Existe una gran diferencia entre las declaraciones optimistas de los desarrolladores de IA y la experiencia caótica que viven realmente educadores y estudiantes.

Utilidad para Profesores Universitarios

  • Desarrollar políticas claras sobre uso de IA antes de que surjan problemas
  • Crear espacios de discusión con colegas sobre mejores prácticas
  • Reconsiderar métodos de evaluación tradicionales que pueden ser fácilmente completados por IA
  • Incorporar evaluaciones presenciales, orales o procesos reflexivos que demuestren comprensión real
  • Establecer expectativas claras sobre uso de IA desde el primer día
  • Enseñar uso adecuado efectivo de IA como herramienta de apoyo, no reemplazo
  • Adaptar metodologías para aprovechar la IA como recurso educativo
  • Mantener diálogo con estudiantes sobre desafíos académicos que llevan a usar IA
  • Explicar por qué ciertos procesos de aprendizaje no deben ser IAgenerativizados
  • Crear ambiente donde estudiantes se sientan cómodos admitiendo dificultades sin recurrir a IA
  • Experimentar personalmente con herramientas de IA para entender sus capacidades y limitaciones
  • Colaborar con colegas para compartir estrategias efectivas
  • Mantenerse actualizado sobre evolución tecnológica y sus implicaciones educativas

 

Visitas: 17

Mis conocimientos de física newtoniana y cómo la IAgen me ha ayudado a aprender

He estado leyendo el artículo de Hestenes et al. (1992) con el objetivo de sacar ideas para el proyecto #PIME_25-26_544 [Investigación acción para el diseño de los materiales, protocolo y análisis de viabilidad de una intervención compleja para analizar el impacto en la mejora del pensamiento crítico y el uso del marco de referencia del triple diamante en la toma de decisiones en grupo] 

Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept inventory. Physics Teacher, 30(3), 141–158. https://doi.org/10.1119/1.2343497

Al acabar de leerlo, me ha picado la curiosidad de comprobar si mis conocimientos de física newtoniana son robustos o estaban plagados de “concepciones alternativas”. He aprovechado que como anexo está el “force concept inventory” (29 preguntas test para diagnosticar las “missconceptions” sobre física newtoniana).

He obtenido 21 respuestas correctas (un 72%), que teniendo en cuenta que son conceptos básicos de Física, podría parecer un poco escaso. No está tan mal al ompararlo con los resultados que muestran los autores para 1500 estudiantes EEUU (de último curso de bachillerato o de primer curso de universidad -incluyendo a Harvard University-). Al empezar el curso el porcentaje de aciertos está entre el 20% y el 25% en estudiantes “normales” de bachillerato; entre el 25% y el 41% los grupos de “altas capacidades”; y de 34% a 52% en universidad. Al acabar el curso suele estar entre 42% y 78% en bachillerato y 63% a 77% en universidad. De modo que mis conocimientos, tras más de 37 años sin haber recibido ninguna instrucción formal sobre física, están al nivel de cuando acabas física de primero de universidad EEUU.

Pero como el force concept inventory también te indica cuales son las “missconceptions” en función de las respuestas que das, se me ha ocurrido jugar con Claude4-sonnet-reasoning. Con este esté sencillo promtpt que aparece en la imagen me ha dado para estar unos 40 minutos respondiendo a las preguntas que me hacía la plataforma.

Dentro de unos meses (cuando ya haya olvidado que respondí hoy) repetiré la prueba a ver si he consolidado el conocimiento.

Visitas: 36

Aprendizaje por observacion vs basado en la practica

Mi modelo de aprendizaje fluctúa entre EPLEDRE (denostado por Ahrens (2020) y muchos promotores de 2ndbrain) y zettlekasten/2ndbrain. En ambos casos, todas las etapas del proceso se pueden hacer íntegramente con IAgen, incluso se pueden hacer muy bien (quizás sin diferencias en resultado respecto a un humano o superando a un humano -por supuesto son imbatibles en tiempo, lo que a un humano le puede costar meses o años, lo tienes en minutos con IAgen-. Pero no aprendo lo mismo consumiendo que creando.
Cuando trabajo manualmente, cada fragmento de información debe ser leído varias veces. Una cuando los subrayo, otra cuando lo posiciono en el diagrama de afinidad, otra cuando lo codifico y otra cuando lo tengo agrupado por códigos para escritura productiva. Estos 3-4 impactos (como mínimo) hacen que recuerde las cosa (o al menos aumente la probabilidad de que las recuerde), también me dan 4 oportunidades para conectar esa información con ideas, preguntas o intereses. Si tengo métodos abreviados que me automatizan alguno de estos 4 pasos, ahorro tiempo, pero seguramente perderé aprendizaje (o aprenderé de otra forma que no se si será igual de profunda o más superficial).

Se me ha ocurrido (no se si con acierto o no), que cuando uso IAgen, estoy haciendo un aprendizaje que podría parecerse a la observación, mientras que si lo hago manualmente es “learning by doing”. Esto me da la oportunidad de intuir que puede pasar en mi aprendizaje aprovechando el conocimiento científico que ya existe sobre estos dos tipos de aprendizaje.

El aprendizaje basado en la práctica (learning by doing) y el aprendizaje por observación (observational learning) se han demostrado efectivos para mejorar el aprendizaje. Pero es posible que no se manifiesten los mismos resultados de aprendizaje, o no con la misma intensidad, con uno y otro. Mientras que “aprender haciendo” permite un aprendizaje experiencial profundo y un desarrollo de habilidades prácticas, “aprender observando” puede centrarse más en la cognición y la asimilación de información a través de la reflexión y el pensamiento crítico.
Estos métodos activan diferentes sistemas cognitivos. Cuando simplemente observamos a alguien hacer algo, nuestro cerebro activa principalmente las neuronas espejo (ubicadas en áreas frontales y parietales) y las zonas visuales, que nos permiten entender lo que vemos pero sin comprometer completamente nuestros sistemas de control. Sin embargo, cuando ejecutamos esas mismas acciones, la cosa es diferente. Para movimientos físicos se activan intensamente la corteza motora (que controla nuestros músculos), el cerebelo (que coordina los movimientos) y los ganglios basales (que automatizan secuencias), además de áreas sensoriales que procesan el tacto y la posición de nuestro cuerpo. Cuando intentamos una accion mental como resolver problemas, la ejecución activa dispara mucho más intensamente la corteza prefrontal (nuestra “zona ejecutiva” que planifica y toma decisiones), áreas de memoria de trabajo en regiones parietales, y el cíngulo anterior (que monitoriza errores y conflictos) que se podría asociar al procesamiento metacognitivo.
Además, durante la observación, la activación cerebral tiende a ser más bilateral y distribuida. Es decir, genera un procesamiento mas general. , mientras que la ejecución fuerza al cerebro a comprometer recursos especializados de cada hemisferio, creando representaciones más específicas y lateralizadas que son más eficientes pero también más especializadas para tipos particulares de tareas.

Un ejemplo, en deporte puedes aprender o interiorizar tácticas o esquemas de juego a partir de visionado de vídeos. Sus ventajas son indudables (hace viable ejercicios que no podrían hacerse en directo por falta de recursos o por condiciones meteorológicas u otras variables de contexto; no agota físicamente, de modo que puedes repetir sesiones sin sobrecargar musculatura; da un punto de vista que es difícil de lograr en el campo; permite parar, pausar, comentar y repetir mucho más flexible que en el campo…). Sin embargo, el impacto en tu forma física es nulo cuando ves un partido y la mejoras cuando juegas uno. De modo que no se aprende lo mismo consumiendo que haciendo.

Referencias

Ahrens, S. (2020). El método zettelkasten [How to Take Smart Notes: One Simple Technique to Boost Writing, Learning and Thinking].
Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89(4), 369–406. https://doi.org/10.1037/0033-295X.89.4.369
Reyes, E., Blanco, R. M. F., Doroon, D. R., Limana, J. L., & Torcende, A. M. (2021). Feynman Technique as a Heutagogical Learning Strategy for Independent and Remote Learning. Recoletos Multidisciplinary Research Journal, 9(2), 1–13. https://doi.org/10.32871/rmrj2109.02.06
“Evolucionando el modelo de lectura comprensiva” Weblog entry. Blog de Juan A. Marin-Garcia. ROGLE-Universidad Politécnica de Valencia. Date posted: 20240818 [Date accessed: 20250814]. © 2025 by Marin-Garcia, J.A. is licensed under CC BY-NC-SA 4.0

Visitas: 8

¿La IA generativa ayuda o entorpece el aprendizaje universitario?

Esta es una de esas preguntas que no tienen una única respuesta. Depende de qué sea para ti “aprender” y depende de cómo uses la IA generativa (si la usas de modo congruente con tu concepción de qué es aprendizaje). Por ello, lo importante no es la respuesta que demos, sino el proceso de reflexión que nos lleve a construir, destruir o reconstruir nuestras creencias educativas y a fijar nuestra posición sobre para qué queremos usar la IA generativa, en qué áreas y cómo. A la segunda parte le dedicaré una entrada futura.

Ahora me quiero centrar en saber qué es eso que llamamos aprendizaje de personas adultas en el contexto de la universidad: qué características tiene y cómo se aprende. A partir de ahí, preguntarme: si aprender es esto, ¿qué usos de la IA generativa me permiten aprender y cuáles lo entorpecen?

Dado que existen múltiples formas de entender qué significa aprender en la universidad, he decidido centrarme en tres marcos teóricos específicos. Voy a asumir que tres libros (de Biggs, Ausubel y Ruiz) tienen razón en sus planteamientos y explorar hacia dónde me llevan sus ideas.

He elegido estos tres autores porque los dos primeros son “clásicos” reconocidos en el campo educativo, mientras que el tercero aporta una perspectiva contemporánea. Es posible que entre estos enfoques no haya acuerdo completo, en cuyo caso desarrollaré líneas paralelas de razonamiento. También es posible que alguno (o todos) planteen ideas que posteriormente se demuestren incorrectas. Aun así, considero que este ejercicio es valioso porque me permitirá explorar las implicaciones prácticas de diferentes concepciones del aprendizaje. Si algún día descubro marcos teóricos más correctos, repetiré este proceso de reflexión y comprobaré si me lleva a las mismas conclusiones o a diferentes.

La tarea, que me llevará varios meses, consistirá en leer y analizar el modelo de aprendizaje que plantea cada autor, relacionándolo con el impacto de los posibles usos de la IA generativa en contextos universitarios.

¿Cómo conceptualizas tú el aprendizaje universitario? ¿Crees que la reflexión sobre nuestras creencias educativas debería preceder siempre a la adopción de nuevas tecnologías?

Referencias:

  • Ausubel, D. P. (2009). Adquisición y retención del conocimiento: Una perspectiva cognitiva. Paidós.
  • Biggs, J. B., & Tang, C. S. (2011). Teaching for quality learning at university: What the student does (4th edition). McGraw-Hill/Society for Research into Higher Education/Open University Press.
  • Ruiz Martín, H. (2023). ¿Cómo aprendemos?: Una aproximación científica al aprendizaje y la enseñanza (4a edición: mayo 2023). Graó.

Entradas relacionadas:

 

Adquisición y retención del conocimiento: Una perspectiva cognitiva: 1 (Educador)¿como aprendemos?: una aproximacion cientifica al aprendizaje y la enseñanza-hector ruiz martin-9788418058059La imagen tiene un atributo ALT vacío; su nombre de archivo es image-4.png

Visitas: 27