¿Te da miedo que la IA sea mejor que tus estudiantes? A mí no

He comparado la respuesta de Claude-sonnet-4 y las de 4 grupos de estudiantes de máster (5 personas en cada grupo) con un caso que he preparado como diagnóstico inicial para comprobar las competencias de mis estudiantes el primer día de clase.

Mis estudiantes han estado trabajando 2 horas sobre un caso de 5 páginas donde su tarea estaba descrita en un párrafo y el resto era información de contextualización.

El Prompt usado con Claude-sonnet-4 en poe.com era simplemente el párrafo de descripción de la tarea a realizar sin ningún contexto adicional (ni de nivel de estudios, ni de contexto… nada). 

“resuelve este caso “”Formas parte de un proyecto que pretende alinear el uso de Inteligencia Artificial (IA) con los valores y objetivos estratégicos de la UPV, de modo que la IA ayude a construir
en lugar de minar el futuro que queremos ser.
Como grupo, debéis manifestar vuestro punto de vista, como estudiantes universitarios,
sobre cómo percibís la IAgen, explorar los problemas o inquietudes que os genera en los
diferentes usos o funciones en las que os afecta como estudiantes en la universidad y
clasificarlos/filtrarlos. Para acabar proponiendo un listado de recomendaciones (o guías)
de uso que sugerís para resolver las causas que originan los problemas que consideráis
como principales y un plan para la implementación de esas recomendaciones.”””

Todos los grupos de estudiantes, en lugar de hacer unas guías para estudiantes, han hecho recomendaciones para la universidad o sus equipos directivos. Claude-sonnet-4 ha cometido exactamente el mismo error en la primera iteración. No obstante, su informe ha sido mucho mejor que el de cualquiera de los grupos.

Le he pedido a la IA una segunda iteración: “las recomendaciones que has dado son para la institución, no has respetado la tarea que era crear recomendaciones para los estudiantes. Por otra parte, ajusta el reporte al modelo triple diamante”. En este caso ha clavado las recomendaciones, aunque su interpretación de lo que era el “framework” de triple diamante dejaba mucho que desear, pero le hubiera puesto un 5 o un 6 de nota a ese ejercicio (los ejercicios de mis estudiantes no creo que pasen de un 2 o un 3, pero a ellos no les he dado la oportunidad de repetirlo).

Conclusión:

Cuando les pido a mis estudiantes, a PRINCIPIO de curso que resuelvan un caso y les valoro en base a los resultados de aprendizaje que esperaría que tuvieran a FINAL de curso, la IA generativa les da “mil vueltas” (o por lo menos una decena).

Lo interesante aquí es qué pasará al final del curso cuando mis estudiantes hayan superado los resultados de aprendizaje esperados. La IA generativa no mejorará su nota de 5-6 (salvo que estemos ante un nuevo modelo), entonces creo que serán mis estudiantes los que le darán mil vueltas a la IA generativa.

Visitas: 24

Esto no es transformacion digital (una vez más)

Voy a impartir un curso para una de las grandes universidades de España (de las que están muy altas en los rankings, porque es muy buena universidad). Llevamos como dos meses intercambiando correos, sobre contenidos, fechas, etc. De hecho, me mandaron una propuesta de alternativas de viaje y acordamos ya el horario de los trenes de salida y llegada que elegiré. Obviamente tienen mi nombre, mi dni, mi correo y todos mis datos de dirección y adscripción y teléfono porque están en mi pie de página de cada correo.

Me dijeron “tomamos nota de tus preferencia de viaje y confirmamos la fecha y hora del curso”

La semana pasada me pidieron que rellenara un formulario de 4 pantallas con 13 campos donde yo creía que el único dato relevante y nuevo que no tenían era mi cuenta de banco para el pago… Pues resulta que ese dato no me lo pidieron (y sospecho que me mandarán un nuevo formulario donde, para pedirme la cuenta bancaria me volverán a pedir, otra vez, como 6 u 8 datos personales). Todo lo demás ya lo tenían. Pero lo tuve que picar yo en un formulario muy moderno y muy mono donde hay que ir desplegando menus o calendarios… Ni siquiera puedo cortar y pegar de la información que tenía en mis correos previos. De modo que, a la incomodidad, le sumamos la posibilidad de error al introducir de nuevo los datos (se me puede ir una ventana de calendario y elegir fechas de abril en lugar de mayo y no darme cuenta, por ejemplo).

Visitas: 92

Flexibilidad y work-life balance

Aunque este articulo tiene otro enfoque y realmente habla de flexibilidad en general, me ha dado por pensar que si no planificamos las tareas el trabajo remoto igual arregla la vida de quien trabaja remoto, pero estresa y empeora la vida de los que están a la espera (o con la incertidumbre) de cuando estarán las cosas hechas.

Esto no es solo por teletrabajo (no penséis que me opongo el trabajo remoto, todo lo contrario), me la juego a que esa incertidumbre existe en el mismo momento que un proceso pasa de las tareas que hace una unidad a las que hace otra unidad distinta.

Mi intuición es que planificamos poco o nada las tareas en mi contexto cercano y el argumento que soporta mi intuición es que muy, muy pocas personas usan “gestores de tareas” (una simple tabla o Trello, Planner, Asana o similares) y las veces que he intentado convencer a alguien que los use en tareas de equipo, la resistencia ha sido brutal (nunca he conseguido que se usen). De modo que sospecho que, a nivel individual, donde es menos evidente su necesidad, se usarán todavía menos.

Mi sesgo es que dudo que alguien planifique si no divide el trabajo en tareas y asigna fechas y responsables para las mismas. Es un sesgo grande, porque realmente esto es “Programar” tareas y no “Planificar” tareas. Pero yo intuyo (de nuevo es intuición) que cuando el articulo habla de Planificar, realmente se quiere referir a Programar tareas.

(una visión de gestores de tareas: Algunas indicaciones para elegir el gestor de tareas que necesita el equipo remoto | 16/21 | UPV – YouTube)

Spoiled for Choice? When Work Flexibility Improves or Impairs Work–Life Outcomes

Brandon W. Smit https://orcid.org/0000-0003-0586-2091 bsmit@bentley.eduScott L. Boyar, and Carl P. Maertz, Jr.View all authors and affiliations

OnlineFirst

https://doi.org/10.1177/01492063231215018

Abstract

Work flexibility, which reflects employee discretion over where and/or when they complete tasks, has become a pervasive practice designed to reduce stress and enhance work–life balance. Despite its popularity, relatively little is known about its potential drawbacks. Through extending conservation of resources theory using dual process models of decision-making, we develop and test a theoretical model that demonstrates how and for whom perceived flexibility can improve or impair work-life outcomes. Across two studies utilizing panel data collected in three waves, we demonstrate that planning is a key mediating mechanism that allows individuals to translate the discretion afforded by flexibility into enhanced work-life balance and reduced exhaustion. Furthermore, we find that planning among those with a low future temporal focus, who are not inclined to plan by default, was strongly influenced by environmental discontinuities (e.g., disruptions to routines). Specifically, while flexibility increased planning when individuals experienced discontinuities, flexibility reduced planning among individuals in stable and familiar circumstances, which ultimately impaired work-life outcomes. Our model offers a useful theoretical lens to understand how individuals manage, and occasionally mismanage, the expanded discretion offered by flexibility.

Visitas: 64

Reto21dias.SIMIO. Resumen día 8

[media]0b694aa0-35d5-11ee-a9f5-bbc321eedb63:640:360[/media]

lo que he hecho en mi octavo día trabajando con Simio: Trabajando con Simio, he estado leyendo las páginas 55 a 60 y ejecutando las instrucciones del capítulo 5 del libro de referencia. Me he creado el modelo que nos indicaban, con diferentes entidades como piezas que tienen distintos tiempos de entrada o proceso, secuencias y rutas. Esto me ha permitido practicar con capacidades de recursos distintas en momentos de tiempo diferentes a través de los work schedules. He aprendido algunos detalles como que en Simio la lógica de los colores es al revés de lo que pensaba: primero eliges el color y luego lo aplicas al objeto, no al revés. Y para seleccionar varios objetos sin que se muevan, hay que usar la tecla Control, pulsarla y con ella apretada, hacer clic para seleccionar el área deseada. #Reto21dias #SIMIO

Visitas: 54

Reto21dias.SIMIO. Resumen día 7

[media]f65cf490-35d4-11ee-8317-3dc1d7f6252c:640:360[/media]

lo que he hecho en mi séptimo día trabajando con Simio: He estado leyendo el capítulo 4 de Jones & Roberts de 2015, la segunda parte del modelo del aeropuerto. He añadido algunas cosas nuevas al modelo para practicar: diferentes rutas con distintas probabilidades de que los pasajeros las elijan, cierta estacionalidad en las llegadas con distintas distribuciones de probabilidad a lo largo del día, y una tabla de llegadas por tipos de pasajero que puedo usar en el modelo. También he practicado con las tablas para introducir propiedades que luego incluyo en los objetos. El capítulo hablaba de las diferencias entre propiedades y variables de estado, lo cual me ha ayudado con la terminología. Ahora entiendo que el holding time es el tiempo de espera en la cola, y el time starved es el tiempo que un proceso está parado esperando entidades para procesar. Otra cosa que he practicado es que Simio usa || para el OR lógico y && para el AND. He acelerado bastante la velocidad del modelo para que se vean los resultados: tenemos 3 rutas con distinto porcentaje de probabilidad, dos servidores donde uno solo abre en ciertas horas, y la llegada de pasajeros funciona por una tabla donde varía por horas. #Reto21dias #SIMIO

Visitas: 93

Reto21dias.IA generativa. Resumen día 9

[media]d457d950-35d4-11ee-a9f5-bbc321eedb63:640:360[/media]

En el noveno día del reto, un hallazgo colateral ha sido este calculador de tokens. Más allá de la curiosidad de ver cómo se agrupan las palabras en tokens, pone de manifiesto que los modelos generativos preentrenados como GPT no entienden texto realmente. Cada token es un número, una posición en un hiperespacio de muchas dimensiones. La proximidad con otros tokens genera una probabilidad de ser el siguiente elegido para construir lo que nosotros vemos como texto, imágenes o código. Las palabras se convierten en tokens, pero cada token es un número que se ubica en una posición del espacio. Eso es lo que trabajan los GPT, números que tienen identificadores y están situados en el hiperespacio con mayor o menor proximidad a otros. No entienden las palabras literalmente. Esto me ayuda a explicar cómo funcionan. También he conocido más en detalle la API de OpenAI y he seguido dos tutoriales. En uno había definiciones y enlaces, como la descripción de embeddings, útiles para búsquedas y agrupación, cosas vinculadas a mis casos de uso. Los embeddings son importantes. También da una idea de cuánto equivale un token, unos 4 caracteres, y que un token son unos 3/4 de una palabra inglesa. Con eso puedo estimar tokens y carga de trabajo para los modelos. Es importante saber los límites de tokens de cada modelo. En GPT se cuentan tokens tanto del prompt como de la respuesta generada. En embeddings solo del prompt. He probado códigos de ejemplo de Python de un tutorial y me han funcionado en Colab. Por último, he obtenido unos 10 enlaces interesantes para consultar en el futuro, que me llevarán unos 2-4 días más del reto. #Reto21dias #IAgenerativa

Visitas: 57

Reto21dias.IA generativa. Resumen día 8

 

[media]bc01af70-35d4-11ee-8485-f133f82f8945:640:360[/media]

Llevo ocho días con mi reto de 21 días y ya empiezo a resolver algunas de las cosas que tenía ganas de hacer desde hace meses. No es la foto del mono comiendo hamburguesas, sino que ya tengo acceso directo a la API de OpenAI sin pasar por AZURE . Es cierto que también he podido configurar AZURE y ya podría programar desde Python directamente sobre la API de OpenAI o a través de AZURE conectarme con ella. Pero bueno, ya tengo las dos vías. He estado haciendo pruebas, mandando texto y pidiendo que me hagan algunas imágenes. En una hora me han costado 0,07€, así que aunque los tokens cuestan, no es tanto si no mandas un volumen enorme. Lo importante es que ya puedo interactuar con ChatGPT a través de Python para mandar mensajes básicos, que no mejora mucho lo que hago por la interfaz web, pero mi idea es trabajar en las próximas semanas con el fine tuning y los embeddings para hacer cosas más diferentes. De momento voy a trabajar directamente sobre la API de OpenAI y si me queda tiempo, intentaré con AZURE , que parece más engorroso que Python contra la API. He seguido una guía web que te cuenta cómo interactuar con ChatGPT en Python con tres ejemplos: mandar/recibir mensajes, crear una foto y preguntar por problemas en un código. He conseguido clonar los tres ejemplos en funciones de Python. He tenido que retocar algunas cosas porque estaba en Google Colab, pero haciendo pequeños cambios he resuelto los casos. #Reto21dias #IAgenerativa

Visitas: 40

Reto21dias.SIMIO. Resumen día 6

[media]c2a82040-346a-11ee-8317-3dc1d7f6252c:640:360[/media]

### Simio y los Modelos de Aeropuerto

Extendí el modelo de check-in de aeropuerto que comencé el día anterior. Establecí propiedades de referencia y respuestas para usar en los experimentos, y luego realicé experimentos y analicé los resultados.

Incluso activé una cuenta de Simio como docente y actualicé mis licencias Simio en mis computadoras. Sin embargo, me quedé con una duda sobre cómo reconstruir ciertas propiedades y respuestas, como la utilización de los recursos. Aunque no pude resolverlo ese día, lo dejé como una tarea pendiente para el futuro.

#Reto21dias #SIMIO

Visitas: 45

Reto21dias.IA generativa. Resumen día 7

[media]654766e0-346a-11ee-8485-f133f82f8945:640:360[/media]

### Más sobre Azure y OpenAI Service

Continué con varios cursos de Azure, esta vez centrados en el OpenAI Service. También me sumergí en varias páginas vinculadas dentro de estos cursos. De particular interés fue un módulo que proporcionaba una explicación extensa y clara de los “embeddings”, que encontré muy útil.

### Explorando Python

Además, jugué un poco con mi computadora Windows para ver si tenía Python instalado. Al final, decidí seguir trabajando con Google Colab y no alterar mi computadora instalando Python, al menos por ahora.

#Reto21dias #IAgenerativa

Visitas: 43

Reto21dias.IA generativa. Resumen día 6

[media]50b1c770-346a-11ee-8485-f133f82f8945:640:360[/media]

### Azure y el Servicio de OpenAI

Mi principal trabajo fue un curso de Azure centrado en el servicio de OpenAI. Durante el curso, me encontré con varios conceptos nuevos, incluyendo los “embeddings”. Aunque el curso proporcionó alguna definición, todavía no comprendo del todo este concepto.

En esencia, el modelo que estás programando recibe entradas y proporciona salidas. Este proceso se lleva a cabo en un portal, que comúnmente llamamos un chatbot. Los usuarios proporcionan algo que utilizas como entradas para tu función y en el mismo portal puedes devolver al usuario las salidas de tu función.

También descubrí que, para usar el servicio de Azure, no basta con crear una cuenta en Azure y solicitar el alta en el servicio. También debes abrir un recurso para luego crear y desarrollar modelos en él. En este sentido, me inscribí en dos tipos de recursos relacionados con la generación de texto y los embeddings, pero no con la generación de imágenes.

Otro descubrimiento interesante fue que OpenAI un rendimiento excepcionalmente bueno con algunos lenguajes de programación como C, JavaScript, PHP o Perl, pero no tanto con Python.

#Reto21dias #IAgenerativa

Visitas: 36